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NON-HOOKEAN, I3EMAmOYIEI;D STRESS-STRAIN BEXKVIOR 

OF SEVERAL IONIC SINGLE CRYSTALS 

by C a r l  A. Stearns and Edward R. Gotsky 

Lewis Research Center 

SUMMARY 


The premacroyield compressive s t r e s s - s t r a i n  behavior of sodium chloride,  
potassium bromide, l i th ium f luoride,  potassium chloride,  and magnesium oxide 
was studied with a ref ined apparatus possessing microstrain sens i t iv i ty .  The 
s t r e s s - s t r a i n  curve was found t o  be characterized by a general  S-shape through 
the onset macroyielding, a lack of l i n e a r i t y  during loading and unloading, and 
very low tangent moduli i n  the region usually considered t o  be e l a s t i c .  The 
extent of the  i n i t i a l  concave-upward region of the  s t r e s s - s t r a i n  curve w a s  
found t o  vary with specimen pretreatment, r a t e  of t e s t i n g ,  and prestress .  
Successive loading-unloading t e s t s  revealed t h a t  closed hys te res i s  loops r e s u l t  
a f t e r  cycling. No indicat ion of a c r i t i c a l  stress f o r  overcoming Peier ls-
Nabarro-type b a r r i e r s  w a s  observed. The experimental r e s u l t s  a re  interpreted 
i n  terms of i n t e r n a l  s t resses  a r i s i n g  from dis loca t ion  configurations. 

IN'I'RODUCTION 

I n  a previously reported study (refs .  1and 2 )  of t h e  f a c t o r s  that in
fluence the  d u c t i l f t y  and strength of several  ionic  s ingle  c rys ta l s ,  large de
viat ions from l i n e a r  e l a s t i c i t y  were observed. While t h i s  study w a s  not d i 
rected s p e c i f i c a l l y  toward invest igat ing preyield s t r e s s - s t r a i n  re la t ions ,  the 
qua l i ty  of the experiments and the  magnitude of the observed deviations from 
Hookean behavior indicated t h a t  these r e s u l t s  were a manifestation of some in
t r i n s i c  property of the  specimen under t e s t .  A t  t h a t  time there  were no other 
reported indicat ions t h a t  anything but  in i t ia l  l i n e a r  e l a s t i c  response should 
be observed i n  a s t r e s s - s t r a i n  t e s t .  

More recent ly  e tch-pi t  s tud ies  have revealed t h a t  d i s loca t ion  motion can 
be detected a t  s t resses  i n  the  range heretofore considered t o  be Hookean. For 
example, Young ( r e f .  3) has observed dis locat ion motion i n  copper s ingle  crys
tals a t  s t r e s s e s  as low as 4 grams per square mill imeter,  and Gutmanas, e t  a l .  
( r e f .  4) have observed dis locat ion motion i n  sodium chloride s ingle  c r y s t a l s  
at s t r e s s e s  as low as 10 grams per square mill imeter.  

I n  addi t ion t o  the  e tch-p i t  evidence f o r  the movement of d i s loca t ions  a t  
very low s t resses ,  recent "microstrain" s tud ies  on a v a r i e t y  of metals ( r e f s .  5 
t o  7 )  have revealed t h a t  nonelastic s t r e s s - s t r a i n  behavior can be detected i n  
conventional t e s t s .  The s t r e s s  a t  which deviations from Hookean behavior a re  



f i r s t  detected appears t o  be dependent on the s e n s i t i v i t y  of t h e  measurements 
(ref. 8). 

Because of t h i s  new information, the  d e t a i l s  of the  very e a r l y  port ion of 
the stress-strain curve f o r  several ionic  s ingle  c r y s t a l s  were reexamined. If 
d is loca t ion  mechanisms are operative here, t h e i r  e lucidat ion would c e r t a i n l y  be 
important t o  the  understanding of macroyielding and other aspects of the de
formation process. 

The work reported herein w a s  concerned s p e c i f i c a l l y  with the  d e t a i l s  of 
the  s t r e s s - s t r a i n  curve of s ing le-crys ta l  sodium chloride,  potassium bromide, 
l i thium f luoride,  potassium chloride,  and magnesium oxide preceding macroyield
ing. A h igh-sens i t iv i ty  compression t e s t ,  designed t o  minimize p r e s t r a i n  e f 
f e c t s ,  w a s  developed and used (1)t o  es tab l i sh  t h a t  the previously reported 
shape of the s t r e s s - s t r a i n  curve w a s  indeed c h a r a c t e r i s t i c  of the  mater ia l  under 
t e s t  and (2) t o  study the  s t r e s s - s t r a i n  curve i n  r e l a t i o n  t o  specimen p r e t r e a t 
ment, s t r e s s  r a t e ,  s t r a i n  r a t e ,  and cycl ic  loading-unloading. 

EXPERIMENTAL 

Specimen Preparation 

The a l k a l i  hal ide c r y s t a l s  used i n  t h i s  invest igat ion were purchased from 
the  Harshaw Chemical Company i n  the  form of cleaved rectangular prisms. ?"ne 
magnesium oxide c r y s t a l s  were purchased from Semi-Elements Inc. as random s ize  
cleavage blocks. Individual specimens were cleaved i n  t h i s  laboratory t o  the 
exact t e s t i n g  cross-sect ional  a rea  but  s l i g h t l y  oversize with respect t o  f i n a l  
t e s t  specimen length. To assure  f l a t  and p a r a l l e l  end faces ,  specimens were 
lapped by hand t o  the f i n a l  t e s t i n g  length. For the lapping operation the 
specimen w a s  clamped i n  a holder designed t o  f a c i l i t a t e  t h e  polishing of t h e  
ends f l a t ,  p a r a l l e l ,  and perpendicular t o  t h e  (100)side faces. Lapping w a s  
done dry on 2/0 t o  4/0 metallographic emery polishing paper. Interferometric 
examination revealed t h a t  the specimen ends had a root-mean-square surface f i n 
i s h  of 4x10-6 inch, were f l a t  t o  within one-half the  wavelength of the thall ium 
green l ine ,  and were p a r a l l e l  t o  within 10 seconds. 

Test Method 

The compression apparatus developed f o r  t h i s  study provided (1)a dis 
placement s e n s i t i v i t y  of 5~10'~inch, ( 2 )  a load s e n s i t i v i t y  of 5 grams, 
(3)  uniaxial  loading, ( 4 )  high-speed response, and (5) the  option of constant
loading-rate or constant-deflection-rate tes t ing .  The complete apparatus i s  
shown schematically i n  f igure  1. This apparatus has three  basic  components, 
and because a n  understanding of the apparatus i s  e s s e n t i a l  i n  evaluating the 
experimental r e s u l t s ,  these components w i l l  be described i n  d e t a i l .  

Loading system. - The specimen, which stands on the lapped-flat  load-cel l  
t a b l e ,  i s  loaded i n  compression i n d i r e c t l y  by the movable crosshead of an  
Instron machine. A s  a s t e p  toward providing ax ia l  loading, it was found 
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Figure 1. - Schematic drawing of compressive stress-strain apparatus. 

necessary t o  have the movable crosshead ac tua l ly  push on a rod guided i n  a long 
bearing. This dr ive rod w a s  a 0.75-inch-diameter, precis ion ground, s ta in less -
s t e e l  shaf t  t o  which a 0.75-inch-high section of cemented tungsten carbide w a s  
brazed a t  the  specimen end. The dr ive rod passed through a 7-inch-long bronze 
bearing housed i n  a massive aluminum frame. The aluminum frame w a s  at tached 
r i g i d l y  t o  the  same base as the load c e l l .  Side forces  and f r i c t i o n  i n  the 
bearing were thus not sensed by the  load-weighing system. The tungsten carbide 
face of the  dr ive rod w a s  ground perpendicular t o  the length of t h e  rod, and 
the  root-mean-square surface f i n i s h  w a s  10 microinches. The load-ce l l  t a b l e  
w a s  lapped t o  a root-mean-square surface f i n i s h  of 4 microinches. 

To obtain s a t i s f a c t o r y  uniaxial  loading it w a s  necessary t o  place a 
30-gram s t a i n l e s s - s t e e l  a n v i l  d i r e c t l y  on the  specimen and l e t  the  drive rod 
a c t  on the specimen through t h i s  anvil .  The a n v i l  had a polished hemispherical 
top and lappe3. f l a t  bottom. The root-mean-square surface f i n i s h  of the f l a t  
bottom w a s  4 microinches, and the  bottom surface w a s  f l a t  t o  one-half the  wave
length of the thall ium green l ine .  I n  addi t ion t o  providing uniaxial  loading, 
the a n v i l  served a d e f i n i t e  function i n  the deflection-measuring system (de
scribed i n  the sect ion Displacement-measuring system). 

A s  mentioned previously, two modes of t e s t i n g  were avai lable  w i t h  this 
loading system, namely, constant loading r a t e  and constant def lec t ion  rate .  By 
maintaining the dr ive  rod i n  d i r e c t  contact with the  movable crosshead, 
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constant def lec t ion  r a t e s  were produced; when a rubber cylinder of low s t i f f 
ness w a s  inser ted  between the dr ive  rod and crosshead, constant loading r a t e s  
were produced. Contact between the  crosshead and the dr ive rod (with or w i t h 
out the  rubber cyl inder)  was maintained by holding a spring i n  compression be
tween a c o l l a r ,  at tached t o  the  dr ive  rod, and the  bearing housing. Rates were 
adjusted by changing crosshead speed or t h e  compliance of the rubber cylinder 
or both. Rates were  determined from independently recorded load-time or 
d e f l e c tion- time curve s. 

Load-weighing .-system.~ ~ - . - - The basic  element of t h i s  system was an Instron 
type CD (1000-lb max. capaci ty)  load c e l l .  This high-capacity c e l l  w a s  selected 
t o  keep t h e  e n t i r e  system as hard as possible  f o r  the constant-deflection-rate 
mode of tes t ing .  The def lec t ion  coef f ic ien t  of the  system was measured and 
found t o  be 2x10-6 inch per pound. 

The load c e l l  w a s  operated with an Ins t ron  bridge amplifier.  The output 
of t h e  phase-sensit ive detector  associated with t h e  amplif ier  w a s  fed through 
a high-cutoff f i l t e r  d i r e c t l y  t o  the y-axis of an 11-by 17-inch x-y recorder. 
?“ne load-weighing system w a s  ca l ibra ted  by dead-weight loading, and the  sensi
t i v i t y  w a s  determined to be 100 grams per inch of char t  on the x-y recorder. 

Displacement-measuring system._ _  _5_____ - Specimen def lec t ion  was measured with a 
l i n e a r  var iable  d i f f e r e n t i a l  transformer (LVDT) and balanced-beam arrangement 
as shown i n  f igure  1. The beam fuL“and the LVDT body were mounted on the 
load-cel l  t a b l e  s o  t h a t  any def lec t ion  i n  the load-weighing system w a s  not de
tec ted  by the displacement measuring system. At opposite ends of the beam were 
attached a probe, which followed the specimen, and t h e  LVDT core, which w a s  
f r e e  to move with respect  t o  the  LVDT body. Only a s l i g h t  magnification was 
offered by the r a t i o  of the beam-arm lengths,  the  r a t i o  of arm lengths being 
1.28. The beam w a s  unbalanced i n  the  probe d i r e c t i o n  by placing a 2-gram 
weight a t  the  end of the  beam. I n  pract ice ,  the  probe r e s t e d  a t  the  bottom of 
a 0.125-inch-high by 0.065-inch-wide slot through the  previously described 
loading anvil. The 2-gram beam unbalance thus provided t h a t  the  LVDT core 
would follow t h e  specimen deflection. 

The LVDT used had a bas ic  s e n s i t i v i t y  of 40 microvolts output per microinch 
of displacement when dr iven by 6 v o l t s  roo t  mean square a t  1.5 kilocycles.  To 
r e a l i z e  t h i s  maximum s e n s i t i v i t y  from t h e  LVDT and t o  make the  device l i n e a r  
through the n u l l  posi t ion,  noise e f f e c t s  had t o  be eliminated completely. This 
was r e a d i l y  accomplished by using a lock-in amplifier,  which i s  a narrow-band, 
coherent detector  that includes a high-& continuously tunable se lec t ive  ampli
f i e r ,  a phase-sensitive detector ,  a direct-current  amplif ier ,  a phase-control, 
signal-modulating o s c i l l a t o r ,  and a recorder-drive c i r c u i t r y .  

The displacement measuring system w a s  ca l ibra ted  by allowing the beam 
probe t o  follow the Instron crosshead d i r e c t l y  and by recording the  motion 
measured by the LVDT against  time. Crosshead displacement r a t e s  were deter
mined with a d i a l  indicator  sens i t ive  t o  0.0001 inch and a stop watch. The 
c a l i b r a t i o n  displacement-time curves were l i n e a r  t o  the extent t h a t  f o r  a t o t a l  
def lec t ion  of 0.00125 inch no deviat ions from l i n e a r i t y  grea te r  than 2. 5x10-6 
inch could be detected. 
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As pointed out previously, a 30-gram loading a n v i l  and a 2-gram beam un
balance were e s s e n t i a l  p a r t s  of t h e  t e s t  arrangement. The 32-gram load w a s  i n  
a l l  cases imposed on t h e  specimen and thus represented an i n i t i a l  load or 
s t r e s s  bias .  I n  a l l  t h e  data  presented herein the  zero applied load or s t r e s s  
axis r e f e r s  t o  the  stress applied i n  addi t ion t o  the  s t r e s s  b i a s  noted with 
each curve. 

Two types of dynamic mechanical devices were used t o  condition some speci
mens. One of these w a s  a Fitzgerald-type dynamic shear transducer ( re f .  9 )  i n  
which specimens were sheared while under a s t a t i c  compressive clamping s t r e s s .  
The second device consisted of a sandwich construction lead zirconate- t i tanate  
(PZT) transducer on which the  specimen stood upright. This consisted of two 
0.5-inch-diameter by 0.25-inch-high PZT disks  with s i lvered  electrodes on the 
end faces  cemented together. The outside electrodes were para l le led  t o  ground, 
and the center electrode of the sandwich w a s  posit ive.  The transducer was  
energized by 40 v o l t s  roo t  mean square derived from a variable-frequency osc i l 
l a t o r .  I n  both dynamic treatments the  maximum displacement amplitude w a s  

inch. 

RESULTS 

Stress-Strain Curve 

A t y p i c a l  load-deflection curve i n t o  the  macroyield region i s  shown i n  
f igure  2 f o r  as-cleaved sodium chloride. This curve w a s  generated i n  a 
constant-s t ra in-rate  compression t e s t .  For comparison purposes the Hooke's l a w  
l i n e  f o r  t h i s  specimen, calculated from e l a s t i c  constant data f o r  sodium chlo
r i d e  ( r e f .  l o ) ,  i s  a l s o  shown. A n  as-recorded load-deflection t race  i s  pre
sented t o  show the qua l i ty  of the  recorded data. Since a l l  the measured de
f l e c t i o n  i s  t h a t  of the specimen under t e s t  and since t h e  measured load i s  that 
applied t o  the specimen, no correct ions a r e  required t o  compute the s t r e s s -
s t r a i n  curve. The load-deflection curve has the same shape as the s t r e s s -
s t r a i n  curve and i n  f a c t  becomes the s t r e s s - s t r a i n  curve when the  axes a r e  
scaled by the specimen's cross-sectional area and i n i t i a l  length, respectively.  

The curve shown i n  f igure  2 i s  seen t o  be characterized by (1)a general 
S-shape through macroyielding (an i n i t i a l  concave-upward portion, termed 
the  foot ,  followed by a concave downward port ion s t a r t i n g  a t  the i n f l e c t i o n  
poin t ) ,  ( 2 )  a lack of l i n e a r i t y  during loading, (3) very low tangent moduli i n  
the region generally considered t o  be e l a s t i c ,  and ( 4 )  a nonlinear unloading 
curve. While the magnitude of the  d e t a i l s  of the s t r e s s - s t r a i n  curve (such as 
the f o o t  length: which i s  approximately the  r a t i o  of s t r a i n  t o  in f lec t ion  p o i n t )  
varied considerably from specimen t o  specimen f o r  presumably i d e n t i c a l  c r y s t a l s  
prepared ident ica l ly ,  these four fea tures  were always obvious f o r  specimens 
t e s t e d  a t  e i t h e r  constant def lec t ion  r a t e  or constant loading ra te .  Further
more, curves of the  s a m e  general  shape were observed f o r  s ingle-crystal  potas
sium chloride,  l i thium f luor ide ,  potassium bromide, and magnesium oxide. 

The shape of the s t r e s s - s t r a i n  curve herein observed f o r  these ionic  c rys
ta l s  i s  unconventional up t o  t h e  i n f l e c t i o n  point  i n  t h a t  the i n i t i a l  curvature 
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Figure 2. - As-recorded, loaddeflection trace for cleaved sodiu chloride single crystal tested in compression. Specimen area, 49.437 square 
millimeters; length, 18.39 millimeters; strain rate, 1.15~10-aper second; stress bias, 0.65 gram per square millimeter. 

i s  concave upward. Beyond the  in f l ec t ion  poin t  the  shape of t he  curve i s  
qua l i t a t ive ly  similar t o  t h a t  observed by other  inves t iga tors  ( r e f s .  11 t o  13), 
and the  s t r e s s  range f o r  macroyielding i s  i n  agreement with the  values r e 
ported i n  the  l i t e r a t u r e  ( r e f .  14 ) .  

Although a l l  t es t  conditions ( ax ia l i t y ,  system response, specimen geom
e t ry ,  surface f i n i s h  of specimen ends, e t c . )  were considered t o  be excel lent ,  
it was recognized t h a t  t he  i n i t i a l  curvature observed could conceivably be due 
t o  f ac to r s  inherent i n  the tes t  r a the r  than i n  the  specimen. Specif ic  t e s t s  
were performed t o  a sce r t a in  whether this shape was cha rac t e r i s t i c  of t he  spec
imen or an a r t i f a c t  of t he  t e s t .  While a l l  these  t e s t s  indicated t h a t  t h e  
shape was inherent t o  the  specimen, the  best proof was provided by the  follow
ing experiment. 

A specimen w a s  subjected t o  t h ree  loading-unloading cycles t o  a maximum 
stress below the  i n f l e c t i o n  point  s t r e s s .  These three  cycles  are shown i n  
figure 3. From f igu re  3 it i s  obvious that a r e s idua l  s t r a i n  i s  associated 
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Stra in  

Figure 3. - In i t ia l  portion of compressive stress-strain curve showing effects of repeated loading and unloading and audiofrequency shaking. 
Specimen length, 18.5 millimeters; s t ra in  rate, l.ZOxlO-4 per second. 

with each cycle. This res idua l  s t r a i n  decreases w i t h  each successive cycle. 
After many successive cycles, the res idua l  s t r a i n  would become zero (described 
i n  d e t a i l  i n  t h e  sect ion Cyclic Loading and Unloading). After cycle 3 the  
specimen was removed from the compression appasatus and placed gent ly  on the  
PZT transducer. The transducer w a s  not energized and the  specimen w a s  allowed 
t o  remain on the transducer f o r  5 minutes. Next the  specimen w a s  returned t o  
the  compression apparatus and a fourth loading-unloading cycle was  performed 
(cycle 4 i n  f i g .  3). From 4 it i s  seen t h a t  the res idua l  s t r a i n  decreased as 
expected, and the  5-minute r e s t  on the  transducer p lus  the  t r a n s f e r  time had 
v i r t u a l l y  no e f f e c t  on cycle 3. Again the specimen was  removed from t h e  com
pression apparatus and placed on the  PZT transducer. This time the  transducer 
was energized by 40 v o l t s  roo t  mean square. The frequency of t h e  energizing 

Aftervoltage w a s  var ied from 100 t o  104 cps i n  a random scanning manner. 

5 minutes of shaking by the transducer (max. amplitude, 1x10-6 in.  ), t h e  speci 

men was returned t o  the  compression apparatus, and the f i f t h  cycle (cycle 5 i n  
f ig .  3) was performed. Inspection of f igure  3 reveals  t h a t  t h e  r e s i d u a l  s t r a i n  
associated with 5 increased compared with 4 or  3. This increase in r e s i d u a l  
s t r a i n  i s  taken t o  show t h a t  the  foot  has been a t  least  p a r t i a l l y  regenerated. 

Similar t es t s  were performed with the Fi tzgerald dynamic shear apparatus 
used for t h e  shaking instead of the  PZT transducer. These t e s t s  also showed 
tha t  the  foot  could be regenerated. 

The increase i n  r e s i d u a l  s t r a i n ,  associated with a loading-unloading cycle, 
after shaking can only be a t t r i b u t e d  t o  i n t e r n a l  changes i n  the  specimen caused 
by the  shaking. The experiments were performed i n  a manner t h a t  eliminated 
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possible  time e f f e c t s ,  and the  aqplitude of the shaking w a s  too s m a l l  t o  cause 
ex terna l  a l t e r a t i o n s  t o  t h e  specimen, such as geometry changes, e tc .  These 
results, together with t h e  f a c t  t h a t  the  s t r e s s - s t r a i n  curves f o r  specimens 
prepared i n  i d e n t i c a l  fashion vary Fn d e t a i l ,  lead t o  the conclusion t h a t  the 
observed curvature of t h e  s t r e s s - s t r a i n  curve i s  a manifestation of the  in
t r i n s i c  s t ruc ture  of the specimen under t e s t  and not an a r t i f a c t  of the test. 
Additional f a c t o r s  t h a t  f u r t h e r  subs tan t ia te  t h i s  conclusion w i l l  be  pointed 
out as other experimental r e s u l t s  a r e  presented. 

Ef fec ts  of Specimen Pretreatments 

Specimens annealed for 10 hours a t  100' C below t h e i r  melting point  and 
specimens i r r a d i a t e d  with 2-Mev electrons o r  70 t o  250-kilovolt X-rays showed 
the  same  general  shape s t r e s s - s t r a i n  curve noted previously. For annealed 
sodium chlor ide the  general  s t r e s s  l e v e l  f o r  macroyielding was  slightly lower 
than that observed f o r  as-cleaved specimens. Electron i r r a d i a t i o n  ra i sed  the 
general  stress l e v e l  f o r  the macroyielding of sodium chloride by a fac tor  of 
about 40 above t h a t  f o r  as-cleaved specimens, and X-ray i r r a d i a t i o n  ra i sed  it 
by a Zactor of about 10. (Exact values depend on dose, but  are not important 
f o r  considerations presented here in . )  

I n  addi t ion t o  these 
changes i n  the macroyield 
level ,  the  various p r e t r e a t  
ments effected changes i n  
the f o o t  length. Annealing 
reduced t h e  foot  length 
s l i g h t l y ,  and the i r r a d i a 
t i o n s  increased the  foot  
length as compared with as-
cleaved specimens. 

The s t r e s s - s t r a i n  curve 
f o r  an electron-irradiated 
sodium chloride specimen i s  
shown i n  f igure  4. Irra
d i a t i o n  time w a s  15 minutes 
on a s ide i n  a 2-Mev 10 m i 
croampere beam; the i r r a d i a 
t i o n  w a s  done i n  air. From 
f igure  4 it can be seen t h a t  
the four fea tures  noted pre
viously a r e  s t i l l  present 
even though the scale  re
quired t o  show the curve 
through macroyielding i s  

24 
I 
* I0 

I 
a 
I I / I  

16 
I 1 

32x10-4 g r e a t l y  compressed as com-
Strain pared with f igure  2. On 

Figure 4. - Compressive stress-strain curve for electron-irradiated sodium this  scale  port ions of the 
chloride. Irradiat ion for 1 hour  bv 2-Mev 10 m i c r o a m w e  beam: stress curve appear almost l inear ,  
bias, 0.60 gram per square mil l imeter; s t ra in  rate, 2.'05x10-4per second. but  when the curves f o r  
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s imi la r ly  t r e a t e d  specimens were recorded with high s e n s i t i v i t y ,  the  lack of 
l i n e a r i t y  was more apparent. 

When the i r r a d i a t e d  specimen of f igure  4 was repeatedly loaded and un
loaded ( m a x .  s t r e s s  of 3600 g /m2)  nine times, the  ninth cycle had no res idua l  
s t r a i n  associated w i t h  it, and the  maximum tangent modulus w a s  4 .29xI-G dynes 
per square centimeter. This value i s  within about 1percent of the value de
r ived from e l a s t i c  constant calculat ions and c l e a r l y  shows t h a t  the  experi
mental arrangement i s  indeed capable of measuring high modulus values. 

Testing. Rate and Size Effects  

All the  r e s u l t s  presented heretofore hold f o r  specimens t e s t e d  i n  
constant-s t ra in-rate  or constant-s t ress-rate  compression. Definite r a t e  de
pendencies, however, were observed, espec ia l ly  with regard t o  the foot  of the 
s t r e s s - s t r a i n  curve. I n  f igures  5 ( a )  and ( b )  a r e  p lo t ted  the  i n i t i a l  portions 
of the s t r e s s - s t r a i n  curves f o r  sodium chloride; these curves were generated i n  
a constant-s t ress-rate  compression t e s t ,  and individual s t r e s s  r a t e s  were de
termined from independently recorded load-time curves. To minimize var ia t ions  
from one c r y s t a l  t o  another, the two specimens of f igure  5(a) and the two spec
imens of f igure  5(b)  were each cleaved from the same parent prism. The cross-
sec t iona l  dimensions were cleaved f i r s t ;  then the prism length w a s  bisected.  
From f igure  5 it can be seen t h a t ,  t h e  slower the s t r e s s  r a t e ,  the  la rger  the 
foot.  Curves generated a t  r a t e s  intermediate t o  those shown i n  f igure  5 showed 
the same general  trend. 

Typical r e s u l t s  of constant-s t ra in-rate  tes ts  are  presented i n  f igure  5 ( c )  
f o r  sodium chloride. Again a l l  the  specimens represented by the  curves i n  t h i s  
f igure were cleaved from the same parent prism. For the  range of r a t e s  exam
ined, the foot  increased with decreasing s t r a i n  ra te .  

A comparison of the  curves shown i n  f igures  5 ( a )  and ( b )  reveals  t h a t  an 
apparent s ize  e f f e c t  e x i s t s  with regard t o  the foot of the  s t r e s s - s t r a i n  curve. 
When t h i s  s ize  e f f e c t  i s  investigated,  the s t r a i n - r a t e  and the s t r e s s - r a t e  e f 
f e c t s  complicate matters because during any t e s t  only one of these r a t e s  can be 
held constant. For example, samples of equal cross  sect ion t e s t e d  a t  a con
s t a n t  crosshead speed w i t h  a s ingle  rubber cylinder yielded a constant loading 
or s t r e s s  r a t e ,  but obviously the  s t r a i n  rate changed w i t h  sample length. Thus 
foot  var ia t ions  observed with changes i n  sample length might be due t o  the  
change i n  s t r a i n  r a t e  or the change i n  length or both. For t h i s  reason a l l  
s i z e  e f f e c t s  observed a r e  re fer red  t o  as appazent s ize  e f fec ts .  

Apparent s ize  e f f e c t s  have been observed i n  both constant-s t ra in-rate  and 
constant-s t ress-rate  tests. I n  f i g u r e  5(d)  are  p lo t ted  s t r e s s - s t r a i n  curves 
generated i n  a constant-s t ra in-rate  test .  For the  three  curves shown the  
s t r a i n  r a t e  w a s  approximately constant, but the  specimen length w a s  var ied by 
a f a c t o r  of nearly 6. The t h r e e  specimens represented i n  t h i s  f igure  were 
cleaved from the  s a m e  i n i t i a l  stock. The r e s u l t s  shown i n  f igure  5(d)  indicate  
t h a t  shorter specimens produce a l a r g e r  f o o t  on the  s t r e s s - s t r a i n  curve. 
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R a t e  and s i z e  e f f e c t s  in l i th ium f luor ide ,  potassium bromide, potassium 
chloride,  and magnesium oxide have only been examined i n  a very preliminary 
fashion, but indicatZons are that the  same general  t rends  are followed as i n  
sodium chloride.  Detailed s tudies  of these  e f f e c t s  in sodium chlor ide as wel l  
a s  i n  potassium chloride,  potassiumbromide, and magnesium oxide a r e  to be the  
object  of fu r the r  invest igat ion.  

-

1.26 

(a) Effects of stress rate; stress bias, 0.65 gram per square millimeter. 

0.062
1 

Strain 

(b) Effects of stress rate; stress bias, 0.64 gram per square millimeter. 

Figure 5. - Initial portion of constant-stress-rate compressive-stress-strain curves for cleaved sodium chloride specimens. 
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Cyclic Loading and Unloading 

Repeated loading-unloading t e s t s  were performed on the  five ionic  s ingle  
c r y s t a l s  studied i n  t h i s  investigation. These t e s t s  are re fer red  t o  as cycl ic ,  
but the exact nature of the  cycle i s  such that the  specimen i s  only  subjected 
t o  an applied unidirect ional  force.  The specimen i s  compressed, but  not pulled 
back. For a constant-s t ra in-rate  t e s t ,  compressive loading proceeds by way of 
the  constant applied s t r a i n  rate, and unloading takes  place when the  dr ive rod 
i s  backed off the  specimen a t  t h e  same constant r a t e  used during loading. For 
the  constant-s t ress-rate  t e s t ,  loading and unloading proceed a t  a constant 
appl icat ion and removal of load. 

2 . 0 5 ~ 1 0 - ~/ 
(c) Effects of s t ra in  rate; stress bias, 0.65 gram per square millimeter. 

01x10-4 

u
I2 


Strain 

(d) Effects of specimen size; stress bias, 0.65 gram per square millimeter. 

Figure 5. - Concluded. In i t ia l  port ion of constant-stress-rate compressive-stress-strain curves for cleaved sodium chloride specimens. 
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When a cycle (load and unload) was  performed for the f i r s t  t i m e ,  an open 

hys t e re s i s  loop resulted (Le.,  there  w a s  r e s idua l  s t r a in  associated with the  
cycle) ,  Upon reloading, t h e  curve almost followed the first cycle b l o a d i n g  
curve. If in the second cycle the  maximum s t r e s s  of t h e  f i r s t  cycle was not ex
ceeded, the  second-cycle loop was not as open as the f i r s t ;  that i s ,  t h e  re
s idua l  s t r a i n  was  reduced. With each successive cycle  t o  loads equal to or 
less  than t h e  f i r s t - c y c l e  maximum, the loops closed f u r t h e r  u n t i l  f i n a l l y  a 
completely closed loop w a s  formed- Closed loops may be t raversed any nurdber of 
times i n  a remarkably reproducible manner. Once a closed loop was formed, it 
could be made t o  open in t h e  next cycle i f  t he  m a x i m u m  s t r e s s  of t h e  preceeding 
cycles was exceeded. Again more cycling t o  below the  new m a x i m u m  stre.ss pro
duced a closed loop, An example of cyc l ic  t es t s  showing th i s  behavior i s  pre
sented f o r  magnesium oxide i n  f igu re  6 where a recorded load-deflect ion t r a c e  
i s  shown. 

.oading-unloading cycle 

Deflection, cm 

Figure 6. - Successive constant-strain-rate loading-unloading, loaddeflect ion curves for cleaved magnesium oxide. Specimen 
area, 33.62 square millimeters; length, 18.49 millimeters; s t ra in  rate, 1.BxlO-4 per second; stress bias, 0.95 gram per 
square millimeter. 

Generally, many cycles  were required to form closed loops i f  the  maximum 
s t r e s s  was below t h e  macroyield s t r e s s ,  bu t  i f  t h e  maximum stress w a s  w e l l  i n t o  
the  macroyield region, only a f e w  cycles were needed to produce closed loops. 

i 
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Results representat ive of t h i s  behavior a re  shown i n  f igure 7 f o r  potassium 
bromide . 

Loading-u nloading cycle 

H w H 

2 . 5 ~ 1 0 - ~  2. 5 x W 4  2 . 5 ~ 1 0 - ~  

Deflection, cm 

Figure 7. - Successive constant-strain-rate loading-unloading, load-deflection curves for 
annealed potassium bromide. Specimen area, 30.09 square millimeters; length, 18.42 
millimeters; s t ra in  rate, 1.16~10-4per second; stress bias, 1.07 grams per square 
millimeter. 

Relative time was 
found t o  be an important 
fac tor  when observing 
hysteresis  loops. Open 
loops were of ten  seen t o  
tend toward closing a t  
zero applied s t ress ;  f o r  
very open loops ( f i r s t  
few cycles) times of t h e  
order of hours were re
quired f o r  any closing, 
but  f o r  nearly closed 
loops (those formed a f t e r  
many cycles)  closing w a s  
of ten observed i n  sec
onds, and usually the  
closing w a s  not continu
ous.but  stepwise. These 
observations on sodium 
chloride a r e  t h e  same as 
those reported by 
Roberts and Brown 
( r e f .  5) f o r  zinc. A 
f u r t h e r  aspect of this 
e f f e c t  of time w a s  ob
served when specimens 
were allowed t o  age i n  
place a t  zero applied 
s t r e s s  a f t e r  a few cy
c l e s  t o  s t r e s s e s  below 
the  inf lect ion-point  
s t ress .  The loop formed 
a f t e r  the aging period 
was found t o  be more 

open than the  las t  loop formed before aging; i f  suf f ic ien t  aging time was 
allowed t o  elapse (>24 h r ) ,  the  f i r s t  cycle was  almost completely reproduced. 

Another e f fec t  of t e s t i n g  r a t e  was  seen when successive loops were gener
ated a t  Gifferent ra tes .  A t y p i c a l  group of r e s u l t s  i s  shown i n  f igure  8. Ten 

P 	 loading-unloading cycles (not  shown) t o  a m a x i ”  load of 2400 grams were per
formed i n  a constant-s t ress-rate  t e s t .  The crosshead speed f o r  the  f i r s t  
10 cycles w a s  0.5 inch per minute, which produced a loading r a t e  of approxi-

I 	 mately 6 grams per square millimeter per second. Cycle 1 1 w a s  executed at th i s  
same crosshead speed; the  maximum load was  500 grams. Immediately thereaf te r ,  
the  crosshead speed w a s  reduced t o  0.05 inch per minute, and cycle 1 2  w a s  per
formed. After cycle 12, t h e  crosshead speed w a s  reduced s t i l l  another f a c t o r  
of 10 t o  0.005 inch per minute, and cycle 13 w a s  generated. From f igure  8 it 
i s  obvious t h a t  the  loop became more open as the rate was reduced; th is  i s  
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Loading -
unloading 

12 13 

400


300
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3
200

100

0 
Deflection, cm 

Figure 8. - Successive loading-unloading, loaddeflect ion 
curves for cleaved sodium chloride. Irradiated for 10 
minutes by 2-Mev 15 microampere beam; specimen 
area, 49.558 square millimeters; length, 18.78 m i l k  
meters. 

opposite t o  what w a s  observed when a l l  
t h ree  loops were generated a t  the  same 
rate. Also t o  be noted i n  f igu re  8 i s  
the f a c t  that the slowly t raversed loop 
i s  considerably serrated;  whereas, the  
loop generated at  the  high r a t e  i s  not. 

I n  t h e  course of this invest iga- v 
t i o n  it w a s  cons i s t en t ly  observed t h a t ,  
a t  the  slower rate of t e s t i n g  (whe%her 
constant s t r a i n  r a t e  o r  constant stress 1 

r a t e ) ,  t h e  loops were la rger ,  more cy
c l e s  were required t o  produce closed 
loops, and the  loading and unloading 
curves were more i r regular .  

The e f f e c t s  of performing suc
cessive cycles  t o  increasing m a x i m u m  
s t r e s s  a re  shown i n  f igu re  9. From 
t h i s  f igure  it can be seen t h a t ,  each 
timea successive is generated to 
a higher load than t h e  preceeding CY
c l e ,  t he  slope of t he  new cycle loading 
curve becomes smaller a f t e r  t h e  m a x i 

mum load of the  preceeding cycle i s  exceeded. For brev i ty  some of t he  cycles  
have been omitted. 

It i s  t o  be noted t h a t  t h i s  change t o  a lower slope takes  place a t  a l l  
s t r e s s  ranges, even before the  i n f l e c t i o n  point  and macroyield region. This 
e f f e c t  i s  i d e n t i c a l  t o  t h a t  general ly  observed i n  t h e  macroyield or gross
plastic-deformation p a r t  of the  s t r e s s - s t r a i n  curve of a wide va r i e ty  of other 
materials.  I n  many of the  t e s t s  performed, s imilar  changes i n  slope were noted 
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i n  t he  i n i t i a l  loading curve a t  very low s t r e s ses  (e.g., f i g s .  5 (a )  t o  ( c ) ) .  
These changes i n  slope o f  the i n i t i a l  loading curve are believed t o  be the  re 
sult of small s t r a i n s  introduced by handling p r i o r  t o  tes t ing .  The very low 
i n i t i a l  modulus here observed makes it reasonable t o  expect that such s t r a i n s  
could occasionally be introduced even w i t h  c a re fu l  handling. 

Localized c y c l i c  loading 
* I  and unloading about various 

compressive stress l e v e l s  (i.e. ,I about a b i a s  stress) revealed 
E t h a t  t he  shape of the loop 

transversed depends on the  
s t r e s s  l e v e l  about which t h e  

m cycling i s  performed (shownE 
5; ---------1 	schematically i n  f ig .  10). A t  

l o w  stress l e v e l s  t he  loop i s  
crescent  shaped and the  general  
slope of t h e  loop i s  s m a l l .  A t  
s t r e s s  levels above the in f l ec 
t i o n  point  t he  loop takes  on____--- / the  appearance of more conven

c t i o n a l  hys te res i s  loops, and 
Strain the  slope i s  increased (i.e. , 

Figure 10. - Schematic compressive stress-strain curve showing shape of loop the  loop Stands more e r e c t ) .  
obtained at various bias stress levels. 

DISCUSSION 


The most s t r i k i n g  fea ture  exhibi ted by the experimental r e s u l t s  i s  t h e  
i n i t i a l  low-slope, concave-upward region of the  s t r e s s - s t r a i n  curve. All of 
t he  experimental r e s u l t s  e s t ab l i sh  t h a t  the  foo t  i s  a manifestation of a real  
deformation mode of t he  mater ia l  under t e s t .  The e f f e c t s  of dynamic shaking, 
pretreatments, t e s t i n g  r a t e ,  and cyc l ic  loading-unloading cannot be adequately 
explained i n  terms of a n  a r t i f a c t  of the  t e s t i n g  procedure. 

A t  the  present time a spec i f ic  de t a i l ed  model t o  explain a l l  the  experi
mental r e s u l t s  i s  n o t  avai lable;  however, when the  r e s u l t s  a re  in te rpre ted  i n  
terms of a simple physical  scheme involving dis locat ion,  t h e  shape of the  
s t r e s s - s t r a i n  curve appears t o  be compatible with ex i s t ing  d is loca t ion  con
cepts. Since the  r e s u l t s  show no indica t ion  of a c r i t i c a l  stress for over
coming ba r r i e r s ,  such as the  Peierls-Nabarro type, the scheme must f i rs t  account 
f o r  d i s loca t ion  motion a t  near-zero applied s t r e s s .  

’ 
There i s  ample evidence i n  the  l i t e r a t u r e  t o  show t h a t  a l l  mater ia l s  con

t a i n  complex d i s loca t ion  arrays. With t h e  la rge  d i l a t a t i o n  cha rac t e r i s t i c  of 
r 	 dis loca t ions  and the  normal d e n s i t i e s  of d i s loca t ions  observed by e t ch -p i t  

methods, the  presence of a l a rge  i n t e r n a l  s t r e s s  f i e l d  i s  t o  be expected. The 
exact nature of t he  stress f i e l d  f o r  any specimen w i l l  be determined by the  
configuration of t h e  d i s loca t ion  array. It i s  not unreasonable t o  assume that 
the  configuration w i l l  be such that t h e  i n t e r n a l  s t r e s s e s  will, under t he  
ac t ion  of an appl ied ex te rna l  s t r e s s ,  enhance t h e  movement of some d is loca t ions  
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and oppose the  motion of others. The specimen w i l l  thus  have d is loca t ions  
avai lable  f o r  motion a t  low applied s t resses .  The s t r a i n  response of the  spec
imen w i l l  be governed by the  number of d i s loca t ions  that can move a t  the  lowest 
ve loc i ty  consis tent  with the applied stress and with the ever changing i n t e r n a l  
stress d is t r ibu t ion .  

On the  b a s i s  of t h i s  scheme, the  r e l a t i v e l y  l a r g e  s t r a i n s  a t  low applied 
stress a r e  the result of d i s loca t ion  motion caused by t h e  l o c a l  r e s u l t a n t s  of 
the  applied and i n t e r n a l  s t resses .  At low s t resses ,  d i s loca t ions  move at low 
v e l o c i t i e s  (ref.  4) .  As  the  deformation proceeds, the  s t r e s s - f i e l d  i n t e r 

s
act ions are a l t e r e d  such t h a t  fur ther  d i s loca t ion  motion becomes more d i f f i c u l t  
to attain. As more d is loca t ions  lose  their mobility, the applied stress needed 
to maintain the  imposed deformation r a t e  r i s e s ,  the s t r e s s - s t r a i n  curve in
creases i n  slope, and the  d is loca t ion  veloci ty  increases. Eventually the  ap
p l i e d  stress reaches a s u f f i c i e n t l y  high l e v e l  to allow another deformation 
mechanism to predominate. This s t r e s s  l e v e l  i s  near the inf lect ion-point  
s t r e s s ,  The mechanism operating a t  these higher s t r e s s e s  may involve the gen
era t ion  of more d is loca t ions  or  the  attainment of higher mobi l i t i es  or both. 
I n  any event, t h e  product of the  number and ve loc i ty  of the  d is loca t ions  i n  the 
specimen starts t o  increase,  and hence, the  slope of the  s t r e s s - s t r a i n  curve 
begins to decline. 

The nonlinear unloading curve and res idua l  s t r a i n  associated with the 
s t r e s s - s t r a i n  curve can a l s o  be in te rpre ted  on the  b a s i s  of the  proposed scheme. 
The res idua l  s t r a i n  i s  a t t r i b u t e d  to the  change i n  configuration of the  d is 
locat ion a r ray  while the nonlinear, nonelastic unloading cwve i s  believed to 
be primarily a consequence of the  reverse motion of d i s loca t ions  t h a t  were 
forced i n t o  b a r r i e r s  and high-energy configurations during the  Loading cycle. 
Subsequent loading cycles t h a t  do not exceed t h e  maximum applied stress of the  
first cycle display the  e f f e c t s  of addi t ional  configurational changes. The 
unloading curve measures the  recovered s t r a i n  caused by the  back forces. When 
the former contr ibutes  s t ra ins  l e s s  than 5 ~ l . O ’ ~  ( the s t r a i n  resolut ion l i m i t  
of these experiments), the  loops appear closed. The shape of a closed loop 
measures only the  revers ib le  motion of dis locat ions i n t o  bar r ie rs .  The 
concave-upward shape of the closed loops displays the increase i n  s t i f f n e s s  
t h a t  a d is loca t ion  experiences as it moves i n t o  bar r ie rs .  

When the  maximum applied s t r e s s  of previous cycles  i s  exceeded i n  a sub
sequent cycle, the stress-strain curve undergoes a r a d i c a l  change i n  slope. 
This change i s  due to the  addi t ional  configuration changes, which a r e  now pos
s i b l e  under t h e  higher applied stress. Thus, addi t ional  res idua l  s t r a i n  i s  
obtained on unloading. 

I,

Specimen pretreatments t h a t  produce changes i n  t h e  d is loca t ion  s t ruc ture  
would, according to t h i s  proposed scheme, be expected t o  a f f e c t  the  foot  of the 
stress-s t r a i n  curve. Certainly, such treatments as annealing, p r i o r  s t ra ining,  
and i r r a d i a t i o n  alter the  dis locat ion structure;  however, t h e  way these changes 
a r e  effected,  as w e l l  as the type of changes i n  d is loca t ion  s t ructure ,  i s  
l a r g e l y  a matter of speculation beyond the  scope of t h i s  report .  
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SUMMARY OF RESULTS 


From a study of the premacroyield compressive s t r e s s - s t r a i n  behavior of 
sodium chloride,  potassium bromide, l i th ium f luoride,  potassium chlopide, and 
magnesium oxide, the  following r e s u l t s  were obtained: 

1. The compressive s t r e s s - s t r a i n  curve i s  characterized by a general  
1, S-shape through macroyielding, a lack of l i n e a r i t y  during loading and unload-

A 

ing, and very low tangent moduli i n  the region generally considered t o  be e las 
t i c .  

2. Pretreatments such as annealing and i r r a d i a t i o n  do not a l t e r  the gen
e r a l  shape of the s t r e s s - s t r a i n  curve but do a l t e r  individual  d e t a i l s  such as 
the  length  of the i n i t i a l  concave-upward port ion (or f o o t )  and the  macroyield 
s t r e s s  level .  Annealing reduces the foot  and macroyield stress level ;  irra
dia t ion  increases both the foot  length and the macroyield s t r e s s  level.  

3. Rate of t e s t i n g  i s  important t o  the magnitude of the  d e t a i l s  of t h e  
s t r e s s - s t r a i n  curve. Low r a t e s  of t e s t i n g  r e s u l t  i n  a la rge  foot  and very open 
hys te res i s  loops. High r a t e s  of t e s t i n g  r e s u l t  i n  a reduced foot  and l e s s  open 
hy ster e  s is loop s . 

4. The extent of the f o o t  i s  a function of prestrain.  Cyclic pres t ra in ing  
and p r e s t r a i n s  introduced during handling r e s u l t  i n  a reduced foot.  

5. The nature of cyc l ic  loading-unloading hys te res i s  loops depends on 
time. Loops close with t i m e  a t  zero stress, and the  enclosed =ea of t h e  loop 
depends on the time of t raversa l .  The longer the t r a v e r s a l  t i m e ,  the  l a r g e r  
the enclosed area. 

6. The shape of a loop formed by cycling about a b ias -s t ress  l e v e l  depends 
on the magnitude of the b i a s  s t ress .  A t  low s t r e s s e s  the loop i s  crescent 
shaped, and a t  high s t r e s s  the loop i s  e r e c t  and conventional i n  appearance. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, September 14, 1964 
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